#!/usr/bin/python3 # # Useful debugging info when useing dask with SLURM jobs # #import logging #logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) # # A example of using threads on local host # #from dask.distributed import Client, progress #client = Client(processes=False, threads_per_worker=4, # n_workers=1, memory_limit='4GB') # # A example of using SLURM jobs on the farm # from dask_jobqueue import SLURMCluster cluster = SLURMCluster( queue='shared', project="myproj", cores=1, memory="4 GB", python="/usr/bin/python3", job_extra=['--account=shared', '--partition=shared'] ) cluster.scale(jobs=4) # ask for 4 jobs from dask.distributed import Client client = Client(cluster) # # Print dask client info # client import dask.array as da x = da.random.random((10000, 10000), chunks=(1000, 1000)) y = da.random.random((10000, 10000), chunks=(1000, 1000)) z = da.arcsin(x).dot(da.arccos(y)) z.compute() print(z) #import numpy as np #zz = np.asarray(z) #print(zz)